Lifting for Blind Deconvolution in Random Mask Imaging: Identifiability and Convex Relaxation

نویسندگان

  • Sohail Bahmani
  • Justin K. Romberg
چکیده

In this paper we analyze the blind deconvolution of an image and an unknown blur in a coded imaging system. The measurements consist of subsampled convolution of an unknown blurring kernel with multiple random binary modulations (coded masks) of the image. To perform the deconvolution, we consider a standard lifting of the image and the blurring kernel that transforms the measurements into a set of linear equations of the matrix formed by their outer product. Any rank-one solution to this system of equation provides a valid pair of an image and a blur. We first express the necessary and sufficient conditions for the uniqueness of a rank-one solution under some additional assumptions (uniform subsampling and no limit on the number of coded masks). These conditions are special case of a previously established result regarding identifiability in the matrix completion problem. We also characterize a low-dimensional subspace model for the blur kernel that is sufficient to guarantee identifiability, including the interesting instance of “bandpass” blur kernels. Next, assuming the bandpass model for the blur kernel, we show that the image and the blur kernel can be found using nuclear norm minimization. Our main results show that recovery is achieved (with high probability) when the number of masks is on the order of μ log L log Le μ log log (N + 1) where μ is the coherence of the blur, L is the dimension of the image, and N is the number of measured samples per mask.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs

This paper deals with problem of blind identification of a graph filter and its sparse input signal, thus broadening the scope of classical blind deconvolution of temporal and spatial signals to irregular graph domains. While the observations are bilinear functions of the unknowns, a mild requirement on invertibility of the filter enables an efficient convex formulation, without relying on matr...

متن کامل

Fundamental Limits of Blind Deconvolution Part I: Ambiguity Kernel

Blind deconvolution is an ubiquitous non-linear inverse problem in applications like wireless communications and image processing. This problem is generally ill-posed, and there have been efforts to use sparse models for regularizing blind deconvolution to promote signal identifiability. Part I of this two-part paper characterizes the ambiguity space of blind deconvolution and shows unidentifia...

متن کامل

Blind Deconvolution Problems: A Literature Review and Practitioner’s Guide

Blind deconvolution is the process of deconvolving a known acquired signal with an unknown point spread function (PSF) or channel encoding, by jointly estimating the system’s input as well as the system’s PSF. Models for this problem often present as the convolution or product of the underlying signal and the system’s PSF. The acquired signal is bi-linear in these two unknown signals (i.e. line...

متن کامل

A Blind Deconvolution Technique Based on Projection Onto Convex Sets for Magnetic Particle Imaging

Magnetic particle imaging (MPI) maps the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIO) by leveraging the particles’ nonlinear magnetization response. In x-space image reconstruction, MPI images are spatially blurred as a result of the nature of this response, as well as nanoparticle relaxation effects. In this article, we present a deconvolution method for MPI based ...

متن کامل

Identifiability Scaling Laws in Bilinear Inverse Problems

A number of ill-posed inverse problems in signal processing, like blind deconvolution, matrix factorization, dictionary learning and blind source separation share the common characteristic of being bilinear inverse problems (BIPs), i.e. the observation model is a function of two variables and conditioned on one variable being known, the observation is a linear function of the other variable. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015